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Abstract. A new class of global optimization algorithms, extending the multidimensional bisection 
method of Wood, is described geometrically. New results show how the geometry of the global 
minimum relates to performance. Remarkably, the epigraph of the objective function, turned upside 
down, plays a key role. Algorithms customized to take advantage of special information about the 
objective function belong to the class. A number of algorithms in the literature, including those of 
Piyavskii-Sbubert, Mladineo, Wood and Breiman & Cutler, also belong, and simple modifications of 
them produce customized algorithms. Comparison of various algorithms in the class is provided. 
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1. P r e l i m i n a r i e s  

INTRODUCTION 

The key contribution of this paper  is that the shape of the epigraph near  the 

global minimum plays an important  role in the understanding of a new class of  
global optimization algorithms. These algorithms are geometric extensions of 

Wood ' s  multidimensional bisection. For algorithms in this class, best per formance  
comes f rom those that best incorporate the geometry of the global minimum. This 

means  it is possible to find an algorithm in this class customized for objective 
functions with specific geometry  at their global minimum. 

The  well known Piyavski i -Shubert  algorithm is a very simple example of one of 
these extensions and can be used as an illustration. This algorithm requires, as a 

pa ramete r ,  an upper  bound for the Lipschitz constant of the objective function. 
This bound translates to a geometr ic  fact about slopes. If  additional geometry  

about  the global minimum is known, namely that slopes around the global 
min imum are much smaller than this bound,  this paper  shows that running the 
algorithm with a pa ramete r  smaller than the Lipschitz constant may give bet ter  
per formance .  By using such a non-standard parameter ,  the algorithm is no longer 
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Piyavskii-Shubert, but can be viewed as modification customized to use the 
additional information about the global minimum. 

OUTLINE 

In the interest of completeness, this paper begins with the background context of 
multidimensional bisection. This is followed with an informal pictorial excursion 
motivating the formal results. Section 2 defines geometric extensions of multi- 
dimensional bisection, and shows many algorithms relying on underestimators or 
lower envelopes are such extensions. Section 3 contains the main result which 
implies non-trivial extensions. It formalizes customizing an algorithm to incorpo- 
rate the geometry of the global minimum. Finally it offers some insight into the 
behavior of some algorithms when an incorrect Lipschitz bound is used. Section 4 
describes classes of functions suited to customized methods. Section 5 discusses 
implementation. Section 6 gives computer tests which empirically verify that 
customized algorithms work better. Section 7 concludes with a summary and 
questions for future work. 

BACKGROUND 

Wood [9, 10] presents a multidimensional bisection algorithm for finding the 
global minimum of a Lipschitz continuous function defined on a compact domain 
in Euclidean space. As he points out, the most familiar "bisection" algorithm is 
that used to find the roots of a function of one variable by successive halving of an 
interval where the function changes sign. The salient feature of the root finding 
algorithm is that it starts with an initial bracketing interval which is successively 
divided into two parts, one of which contains the point of interest and so provides 
a better bracket; 

In the one variable case, a brief geometric description of one variation of 
Wood's algorithm ("multidimensional bisection with complete reduction") is 
given here. Note in this one dimensional situation, the method reduces to the 
familiar Piyavskii-Shubert algorithm. 

Let f be a Lipschitz continuous function of one variable and M be a bound for 
the Lipschitz constant. Multidimensional bisection produces a nested family of 
sets B0, B 1 , . . .  (called the brackets) each containing the global minimum point(s) 
on the graph of f. 

�9 Initial step: Let B 0 be a bracketing set consisting of a triangle containing the 
global minimum. Let i = 0 

�9 Iterative step: 
(a) Increment i. 
(b) Let x i be the first coordinate of the lowest point of the bracket. Compute 

Yi = f (xi)"  
(c) (Cutting) Let B' be found by removing from Bi_ 1 the region in the plane 
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strictly below the downward facing cone (with sides of slope -+ M) with 
vertex at (xi, Yi). 

(d) (Capping) Let B i be found by removing from B' the half-plane above 
the line y = yi. 

�9 Stopping rule: If the vertical height of B~ is small enough, stop. 

Figure 1 shows one iterative step when M = 1. The bracket prior to the function 
evaluation (the three triangles in lightly ruled lines) is changed to the improved 
bracket (the three triangles in darkly ruled lines). 

Note "bisection" is a reasonable term to apply to this algorithm as all the 
salient features are present. At each iteration the plane is broken into two 
regions; a part (shaded) that cannot contain the global minimum and a part 
(unshaded) that does. This breaks up the previous bracket (here a finite union of 
triangles) into two parts, the correct part being kept for the new bracket. 

For the purposes of this paper, all that is necessary is an understanding of these 
geometric ideas associated with multidimensional bisection. Namely how cutting 
and capping use new function evaluations to modify an old bracket of the global 
minimum, to produce a better one. 

The important discovery made by Wood in [9, 10] was an appropriate extension 
to higher dimensions. There the brackets consist of a finite union of truncated 
upward facing simplicial cones. Cutting consists of removing downward facing 
simplicial cones, while capping removes regions above hyperplanes through the 
evaluated points. The implementation of these geometric ideas is presented in 
detail in his papers. Additionally results about convergence, acceleration and 
optimality are given. 

YI 

Fig. 1. An iterative step of multidimensional bisection. 
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MOTIVATION 

The following pictorial excursion in Figures 2 to 5 motivates this paper's formal 
ideas. Suppose one is given an unknown Lipschitz continuous function with 
Lipschitz constant M = 2. Given some function values, consider trying to find a 
bracket for the global minimum. 

Lipschitz continuous M=2 

Five data points 

I I 

Fig. 2. Some data for an unknown function. 

The geometric ideas of cutting and capping leave the following bracket (the 
unshaded region) which must contain the global minimum. 

Fig. 3. Bracket for global minimum when cutting away downward cones with sides of slope +-2. 

Capping to the lowest value did not remove the global minimum because it has 
a lower value. Cutting away the cones did not remove it, because the cones lie 
under the graph. In fact cutting away the cones cannot remove any of the graph. 
Since the problem is just to find the global minimum, it seems plausible that 
cutting could be done with regions larger than cones. 

With more specific information about the function, the goal is to find better 
cutting regions. Figure 4 shows two functions with Lipschitz constant M = 2 that 
fit the data. Their global minima belong to the bracket. Observe, for each, the 
graph is above the cones cut away. 
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Fig. 4. Two functions in relation to previous bracket. 

It is possible to use bigger cutting regions suited to each. An asymmetric cone 

suits the first, and a "barn roof" ~ suits the second, 
respectively. Figure 5 shows the better brackets that are produced. 

Fig. 5. The two functions and better brackets found by using customized cutting regions. 

The willingness to cut away some of the graph produced smaller brackets. 
Perhaps the southern hemisphere viewpoint inspired this observation: Good 
cutting regions come from turning the epigraph of the function at the global 
minimum upside down. 

The remainder of this paper formalizes this observation, shows how to custom- 
ize a variety of global minimization algorithms, and provides a geometric explana- 
tion of aspects of the Piyavskii-Shubert algorithm and its generalizations. 

NOTATION AND BASIC PROBLEM 

The basic problem is to find the global minimum a and its location E = f - l (a )  of 
a continuous function f :  K--~ ~ where K is a compact domain in ~n. The global 
minimum can also be thought of as G = {(x, o~) ] x ~ K and f(x) = a} a subset of 
{(x, y) I x ~ K and y >~f(x)}, the epigraph o f f  in ~,+1. The sample sequence of 
points where the function has been evaluated is denoted {xi}, and the lowest 
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known height is ag = mining f(x]). Given u: Rn---~ N, saying u is an overestimator 
(or upper envelope) o f f  over K means Vxe K u(x) >~ f(x). Onderestimator (lower 
envelope) is defined analogously. 

The upward M-cone is {(x,y) [ y i> M HxH} in N,+I. The upward simpliciaI 
M-cone is a cone over the regular n-simplex inscribed in the above. The upward 
B-paraboloid is {(x, Y) I Y ~ �89 IIxll2}. The upward MB-parabolic cone is the 

M ~ M 2 union of the upward B-paraboloid and {(x, y) I Y ~> max{ ~ ,  M Hxll - ~ } } ,  the 
part of the circumscribed translated M-cone above the level of tangency. Note 
these regions are just epigraphs of quite simple functions on ~n. Often more 
general regions C in ~n+l need to be considered. The vertex of all the above 
regions is considered to be the origin. A region C turned upside down is formally 
- C. To say a function is bounded by one of the above at a point x 0 in the domain 
means that the region with its vertex translated to (x0, f(Xo) ) lies in the epigraph 
of f. For those readers more familiar with a non-geometric viewpoint, saying a 
function f is bounded by an upward M-cone at x 0 is the same as saying 
g(x) = f(Xo)+ M H x -  Xol I is an overestimator of f over K. 

The downward versions of the above are defined appropriately. In particular 
being bounded by lower regions corresponds to underestimators. 

Using these notions, the class of Lipschitz continuous functions L(M) consists 
precisely of those functions which are bounded by upward and downward 
M-cones at each point of the domain. Similarly let LS(M) be the class of 
functions bounded above and below by simplicial M-cones at each point of the 
domain. 

2.  T h e  G e o m e t r i c  V i e w p o i n t  

GEOMETRIC EXTENSIONS OF MULTIDIMENSIONAL BISECTION (GEMB) 

One obvious way to generalize multidimensional bisection is to use different 
regions in place of M-cones at the cutting step (c). Additionally the strategy at 
step (b) of choosing the next point for function evaluation can be generalized, but 
this is of minor importance in this paper. Except for the later results in Section 3, 
the choice of first coordinate of the lowest point of the bracket suffices. 

Concentrating on the first aspect yields the following family of geometric 
extensions of multidimensional bisection. Each cutting strategy (step (c)) produces 
a different algorithm. Here the brackets B0, B 1 , . . .  are in R n+l. 

�9 Initial step: Let B 0 be a bracketing set containing the global minimum. Let 
i = 0  

�9 Iterative step: 
(a) Increment i. 
(b) Choose x i . Compute yg = f(xi). 
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(c) (Cutting) Let B' be found by removing from Bi_ 1 a cutting region at 

(xi, Yi). 
(d) (Capping) Let B i be found by removing from B' the region above the 

hyperplane y = Yi- 
�9 Stopping rule: If the vertical height of Bi is small enough, stop. 

Of course an extension of multidimensional bisection is only of interest if the 
brackets always contain G. Results pertaining to this are given in Sections 3, 4 
and 5. 

EXAMPLES OF GEOMETRIC EXTENSIONS OF MULTIDIMENSIONAL BISECTION 

A number of algorithms in the literature are GEMB. Of course Wood's multi- 
dimensional bisection is an example where the cutting regions are downward 
simplicial M-cones translated to the evaluated point on the graph. Similarly 
Mladineo's algorithm [6] uses translated downward M-cones. Breiman & Cutler's 
algorithm [5] uses downward B-paraboloids translated so they are tangent to the 
graph at the evaluation points. 

The later two algorithms were not presented by their authors as geometric 
extensions of multidimensional bisection, but were described using under- 
estimators. The global minimum of the underestimator being taken as the 
approximation to the global minimum of f. However such algorithms have a 
natural bracket associated with the underestimator consisting of all points above 
or equal to the underestimator and below or equal to the lowest known value. If 
the underestimator is the point-wise maximum of simple functions, using the 
regions below the graphs of these simple functions as cutting regions for GEMB 
produce algorithms that give these natural brackets. Thus the descriptions of 
these two algorithms as GEMB follow since Mladineo used an underestimator of 
the form maxj_,<_, { f ( x j ) - M I I x - x ~ l l )  and Breiman & Cutler used an undere- 
stimator of the form maxj<_i{f(x/) + Vf(xj)(x  - x j)  - �89 - x/I]2}. 

Some non-trivial GEMB do not correspond to using underestimators. As shown 
in the pictorial motivation, there are brackets that do not arise as the region 
above an underestimator and below the lowest known value. It is possible to have 
a bracket containing the global minimum but not all the graph below the lowest 
known value. In these cases GEMB use cutting regions which remove parts of the 
graph of f. The next section describes which cutting regions can be used in certain 
circumstances. 

3. Main Observation- Custom Cutting Regions 

GETFING CUSTOM CUTTERS 

In this section we show how geometric extensions of multidimensional bisection 
can be found that do not arise using underestimators. The main result in this 
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section shows how specific information about the global minimum point being 
sought can be used to get a " template" .  The cutting regions are all found by 
translating this template to the point of evaluation. As well as providing for new 
G E M B ,  the main results provide some geometric insight to the behavior of 
certain algorithms. 

D E F I N I T I O N  3.1. An upper fitting for  f and N over K is a function u 0 : N" ~ 
such that for each (xn , y , )  E N,  u(x)  = Yn + Uo(X - x , )  is an overestimator of f 
over  K. 

Of particular interest is the case when N = G. Examples are: a function u 0 with 
epigraph the upward M-cone where M is a upper bound for the Lipschitz 
constant; u 0 with epigraph the upward B-paraboloid where B is an upper bound 
for the eigenvalues of the Hessian, and the global minimum of f occurs where the 

gradient is zero; and Uo(X ) = maX(x,,,f(x,,,))eG{f(x + Xm)--f(Xm) } for f defined on 
all of R n. In light of the next proposition and later tests in Section 6, this last 
example produces GEMB most customized to the objective function. However  it 
is not  useful in practice as it requires complete knowledge of the objective 
function. It does provide a useful reference for comparing other GEMB.  Note: 
for the examples here u0(0 ) = 0, but this is not necessary. 

Geometrically (Figure 6) consider a set C the epigraph of an upper fitting for f 
and G over K. This means that for any point v E G, (v + C) 71 (K x R) belongs to 

Fig. 6. Turning a fitting upside down. 
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the epigraph of f. The 
hemisphere observation 
template for the cutting 

following proposition, which formalizes the southern 
in the motivation section, shows - C  can be used as a 
regions. 

PROPOSITION 3.2. I f  u o is an upper fitting for f and G over K, then for each 

function evaluation at x e E K, the region below the graph o f  g(x) = f (x  e) - Uo(X e - x) 
when used as a cutting region in geometric extensions of  multidimensional bi- 
section, will not remove any points o f  G. 

Proof. Take x e C K. Given any global minimum (Xm , f(xm)) E G, one needs to 
show it is on or above the graph ofg. By assumption u(x) =f(Xm) + Uo(X -- Xm) is 
an overestimator of f over K so 

u ( x D  >1 f(x ) 

f (Xm)  n L Uo(X e -- Xm) f (Xe)  

f(Xrn) f (Xe)  -- Uo(Xe -- Xm) g(Xm) 

Before looking at realization and performance of such GEMB, we observe that 
Proposition 3.2 provides some geometric insight to the behavior of certain 
algorithms. To illustrate this consider using the Piyavskii-Shubert algorithm. It 
requires an estimate for the Lipschitz constant M. Suppose one mistakenly 
thought M was 1, when in fact it was really 2. In other words consider a case 
where a wrong "Lipschitz constant" is being used. 

Three possibilities arise: first the algorithm may work correctly; second it may 
satisfy the stopping criterion but give a bracket that fails to contain the global 
minimum; and third it may produce an empty bracket at some step (i.e., in terms 
of underestimators, the one found at that step will lie completely above the lowest 
known value). The concept of upper fitting provides insight into these possibi- 
lities. 

In the first situation, the Lipschitz constant M-- 1 may not have been correct, 
but if Uo(X ) = Ix] is an upper fitting for f and G over the domain, then Proposition 
3.2 insures that if downward 1-cone are used, the global minimum will always be 
in the brackets. 

The third possibility of getting an empty bracket is illuminated by the following 
results which consider what happens when various cutting regions are used in 
GEMB. It should be noted here that capping step (d) of GEMB, could be 
deferred. In other words given a sample sequence, a region F~ could be found by 
removing all cutting regions from K x N, the bracket B~ is then found by 
removing from F k all points above the lowest known value. The following 
propositions concern the sets F k. Consider GEMB that use a template - C  for 
cutting regions, where C is the epigraph of some function u0: Nn___~ N not 
necessarily an upper fitting for f and G over the domain. What such an algorithm 
will find is examined first. 
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PROPOSITION 3.3. Given a function u0: ~n___~ ~. Let N be the biggest set in 

~n+l such that u o is an upper f t t ing  for f and N over K. F k = ((xr ,  Yr) l Yr ~> 
maxi=l...k(f(xi) - uo ( x ~ - x~)}} is the set o f  points outside all cutting regions after 
k function evaluations at a sample sequence {x~). Fn = {(xy, ys) lVx ~ K yy/> 
f (x)  - Uo(X - xf)} is the set o f  points outside all cutting regions if evaluations were 

done at all points o f  K. Let F= = r ~=i Fk" The foUowing holds F k ~ Fk+ 1 ~ " "  
F = D F a = N .  

Proof. Clearly Nis  ( (x , ,  yn) I Vx C K y ,  + Uo(X - x , )  ~> f(x)} which equals F~. 

Note for the following discussion is it necessary to consider strategies at step (b) 
other than choosing the first coordinate of deepest point in the bracket. This next 
proposition gives sufficient conditions for the third possibility. 

PROPOSITION 3.4. Consider a geometric extension of  multidimensional bisec- 

tion that uses an inappropriate template - C  for cutting regions, where C is the 

epigraph o f  some function u0: ~n__~ ~ with u0(0 ) = 0, but u o is not an upper fitting 
for f and any set containing the global minimum over K. Furthermore if  the 
sampling strategy always produces sample sequences that are dense in K, then the 

algorithm will eventually produce an empty bracket. 
Proof. Proposition 3.3 and the density of the sample sequence provides that 

F= = F ,  = N. The condition u0(0 ) = 0 implies that Fa is a subset of the epigraph 
of f,  and hence lies on or above the hyperplane at height a. The fact that u 0 is not 
an upper fitting for f and any set containing the global minimum over K means the 
set Fo is strictly above the hyperplane at height o~. Compactness of the domain 
provides that for some index k, F k is sufficiently close to N and o~ k is sufficiently 
close to a. So the bracket B k being the points in F k that lie at height a k or below is 
empty. �9 

Illustrated in Figure 7 is the set N where 1-cones are used inappropriately. If 

Fig. 7. The set N when 1-cones are used inappropriately. 
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enough points are sampled, F~ will be very close to N and some sample points will 
have values completely below it. 

Considering the second possibility where an algorithm fails by stopping with a 
bracket that does not contain the global minimum. Without denseness of the 
sample sequence not much can be said, however one still has F a strictly above the 
hyperplane at height a. Certainly it may happen for some sample sequence, F~ 
gets close enough to F a to be higher than a, while B k is a non-empty set small 
enough to satisfy the stopping criterion. 

The preceding results have analogs for capping. The concept of lower fitting is 
defined analogously. When looking for global minimum, one lower fitting that 
always works for any function is lo(x ) = 0. This gives rise to the capping removal 
region of the upper half-hyperplane. It is possible to further generalize multi- 
dimensional bisection by considering more interesting capping regions. 

Global optimization via Cutting and capping can be viewed as part of a more 
general framework. The bisection idea can be used to search for any point of any 
region in a vector space. It is possible to formalize this so Proposition 3.2 is a 
simple corollary of a more general result. 

4. Classes of Functions Suited to Custom Cutting Regions 

Proposition 3.2 provides a condition for GEMB to perform correctly in the sense 
that the bracket at each stage contains G. Rates of convergence are handled 
empirically by examples provided in Section 6 which support the observation that 
the use of bigger cutting regions generally produces a faster converging algorithm. 

Performance has to be taken in the context of the class of objective functions 
with which the algorithm is designed to work. For example with a given objective 
function, an algorithm using both first and second derivative bounds would be 
expected to perform better than one that uses only first derivative information. 
For this reason a number of classes of functions is defined, and their relationships 
to each other are provided. Some classes have been used by previous authors, 
while others are specific to this paper and relate to the geometry of the global 
minimum. 

Brent and Breiman & Cutler deal with functions with bounds on the second 
derivatives. Let C~(B) be the class of all twice differentiable functions such that 
h(x o + Ax) = f (x  o) + Vf(x 0) Ax + �89 B [[Ax [[2 is an overestimator of f over K. Simi- 
larly let C;(B) have h(xo+AX)=f(Xo)+Vf(xo)Ax- �89 2 as an under- 
estimator. For a given function the best bounds are the maximum and the 
negative of the minimum of the eigenvalues of the Hessian. Note the bounds B 
and B may be quite different. 

Knowing that the global minimum occurs where the gradient is zero is quite 
useful. Let ZG be the set of differentiable functions with the global minima 
having zero gradient. 

The following classes are ones suited to particular cutting regions arising from 
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upper fittings. SG(M) is the set of all functions with the upward simplicial M-cone 
at the global minimum contained in their epigraph. CG(M) is the set of all 
functions with the upward M-cone at the global minimum contained in their 
epigraph. PG(B) is the set of all functions with the upward B-paraboloid at the 
global minimum contained in their epigraph. PCG(M, B) is the set of all 
functions with the upward B-parabolic cone at the global minimum contained in 
their epigraph. 

PROPOSITION 4.1. The following shows the relation between these classes: 
(1) L(M) C LS(M) 
(2) LS(M) C SG(M) 
(3) L(M) C CG(M) 
(4) 2 C,(B) n ZG C PG(B) 
(5) L(M) n PG(B) C PCG(M, B) 
(6) L(M) n C2u(B) N ZG C PCG(M, B). 

2 Proof. For (4) consider f E C,(B) n ZG and a global minimum (Xm, f(Xm)) of 
f. Vf(Xm)= 0 SO h(xm + ax)= f ( X m ) +  1BIlaxl l  2 is an overestimator for f which 
means f E PG(B). For (5) consider f E L(M) n PG(B) and a global minimum 
(xm, f(Xm) ) of f. The B-paraboloid at the global minimum is in the epigraph of f 
and at each point of the epigraph the M-cone stays in the epigraph. The 
MB-parabolic cone is the union of all M-cones placed at points of the B- 
paraboloid. (6) follows from (4) and (5). �9 

The purpose for introducing these classes of functions is to identify those 
aspects of the objective function that relate to various implementations of 
GEMB. However one may ask, is there any practical way to recognize to which 
class a function belongs? In some cases this may be possible, but generally this is a 
difficult problem. However the difficulty is not just restricted to the special classes 
introduced in this paper. For example finding M, such that a function belongs to 
L(M) ,  is itself a global optimization problem. 

There can be a situation where it is possible to identify one of these classes 
without knowing G beforehand or having to find bounds at all points of the 
domain. For example, consider a function of one-variable known to have the 
global minimum at an interior point and defined by the differential equation 
y '  = x + g(y).  Therefore y" = 1 + y ' g ' ( y ) ,  and when y '  = 0, y" = 1. It follows that 
the function belongs to PG(1). 

5. Implementations of Geometric Extensions of Multidimensional 
Bisection 

Conceptually removing regions is easy, however, in practice can be difficult (e.g., 
it often requires finding the global minimum of another function and setting up of 
data structures to represent the geometry). For removal regions which are cones 
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and paraboloids, implementations, done by others, are discussed below. More 
complicated regions can be handled in some cases. These are only briefly 
mentioned and are topics for other papers. 

EXISTING METHODS 

Interestingly enough, for the algorithms mentioned in this section, implementa- 
tion is done by an appropriate choice of input parameters. The following two 
algorithms are implementations of GEMB with cone cutting regions. The multi- 
dimensional bisection algorithm of Wood was designed to require as input 
parameter a value M (ideally the smallest) such that the objective function is in 
LS(M), however a smaller parameter will often do. 

REMARK 5.1. For functions in SG(M), the multidimensional bisection al- 
gorithm can be used with parameter equal to M. 

The algorithm of Mladineo was designed to require as input parameter an 
upper bound for the Lipschitz constant. That is a value M (ideally the smallest) 
such that the objective function is in L(M). 

REMARK 5.2. For functions in CG(M), the algorithm of Mladineo can be used 
with parameter equal to M. 

Breiman & Cutler describe a method using the gradient function and bound 
K = B/2, where the function belongs to C~(B). Since their algorithm deals with 
intersecting paraboloids, it implements GEMB with lower B-paraboloids as 
cutting regions. 

REMARK 5.3. For functions in PG(B), the algorithm of Breiman & Cutler with 
the gradient function taken as constantly zero and K = B/2 can be used. 

In the one dimensional case, the essentials of the previous algorithm appeared 
in earlier literature. Brent produced an algorithm requiring an upper bound B on 
the second derivative. It relied on the fact (Theorem 2.1 in [4]) that the quadratic 
passing through the end points of an interval and having second derivative B, is 
an underestimator over the interval. A simplified version of Brent's algorithm is 
as follows: begin with evaluations at the end points of an initial interval; in 
general, form the piecewise quadratic with second derivative B between succes- 
sive sample points; use the deepest point of the envelope for the next sample 
point. 

REMARK 5.4. For functions of one variable in C](B)71ZG the simplified 
version of Brent's algorithm above gives the same sample points as the algorithm 
of the previous remark. 
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Fig. 8. Brent's envelope vs. parabolic envelope. 

ACCELERATION OF EXISTING METHODS 

The previous remarks show existing algorithms implement some GEMB with no 
modification other than using different input parameters.  With minor modi- 
fication, these algorithms can be accelerated to handle cutting regions nearly as 
large as MB-parabolic cones. In particular the algorithms of Mladineo and Wood 
requiring a Lipschitz constant bound can be modified to use gradient calculations 
and second derivative bounds as well. The algorithm of Breiman and Cutler can 
be modified to use a Lipschitz constant bound. The required modifications and 
performance of the accelerations are examined in [1]. 

A DUAL IMPLEMENTATION OF MULTIDIMENSIONAL BISECTION WHICH 
IMPLEMENTS GEMB IN SPECIAL CASES. 

In [2] an implementation of GEMB which handles cutting regions that are convex 

sets of the form Ax <-b is presented. The focus of that paper deals with the 
technicalities of implementing the geometry of multidimensional bisection via 
formulae dual to those used in Wood's papers. Each matrix A gives a different 
method.  In particular cones over any polyhedron can be used, thus providing a 
spectrum of GEMB.  At one end is Wood's multidimensional bisection with 
cutting regions cones over the simplex, the simplest polyhedron. At  the other end 
is Mladineo's algorithm using cones over the sphere, the limiting "polyhedron ."  

6. Examples 

DISCRETE TESTING 

In order  to compare various GEMB a discrete implementation has been written in 
m a t l a b .  This implementation finds the global minimum of the objective function 
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over  K D = K Cl D where D is a finite discrete set. The version using cutting 
regions coming from an upper fitting u 0 is: 

�9 Initial step: Let eo(X ) = - ~  for each point x E K D. Let  a 0 = ~. Let  x 0 be a 
specified point of D to be used as the starting point. Let  i = 0 

�9 Iterative step: 

(a) Compute Yi = f ( x i ) .  
(b) Increment  i. 

(c) (Cutting) Let ei(x ) = max{ei_x(X) ,  Yi-1 - Uo(Xi-1 - x)}. 
(d) (Capping)  Let a~ = min{y~_l, ai_l}. 
(e) Choose xi to be a point in K D that minimizes e~(x). 

�9 S topping rule: If ol i - -  e i ( x i )  is small enough, stop. 

The functions ei(x ) play a similar role to underestimators. However  it should be 
stressed that usually they are not underestimators, but they do have the property 
that their global minimum lie below G. The fact that K D is finite means ei(x ) can 
be kept  as a finite list and step (e) is found by sorting. 

The question of the correctness of this discrete implementation arises. Note if K 
is used in place of K D one gets a description of GEMB for the original problem, 
however  step (e) is no longer trivial and depends specifically on the complexity of 
u 0. Although not specifically needed,  the bracket Bi is {(x, y ) ] x  E KD,  e~(x) <~ 

y ~< a~}. The points of K D x ~ that would be in the brackets found by an exact 
implementat ion using the same sample path as the discrete version are precisely 
these Bi. Empirically, discrete versions of Wood's and Mladineo's algorithms 
have been compared with exact versions for functions of one and two variables. 
Convergence behavior is similar until the accuracy approaches the grid size, when 
the discrete version then finds the correct grid point very quickly. 

TEST SET UP 

Five or six versions of GEMB were tried on four standard test functions which 
have their global minimum interior to their domains. The discrete implementation 
was used with D consisting of a 201 x 201 regular grid. The domain and starting 
points for these functions is as in [5]. For each the smallest constants (see Table 
III) are found so the function belongs to C G ( M ' ) ,  L ( M ) ,  2 C , ( B ) ,  and C2(B). 

Thus M is the Lipschitz constant, while M '  is smaller. Particulars of the GEMB 
appear  in Table I. The GEMB II, III, V, VI are algorithms customized to the 
objective function. The cutting regions they use come from regions that fit very 
well into the epigraph of the objective function at the global minimum. 

A very simple indication of performance is the number of iterations till the 
bracket  consists of one grid point. Although this is dependent  on the initial grid 
size, it is useful for comparison. Note that an iteration of Breiman & Cutler's 
method (IV) consists of both a function and a gradient evaluation, while for the 
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Table I. GEMB used in tests 

GEMB Cutting region used Upper fitting uo(x ) = Algorithm 

M-cones  MIIxll Mladineo's 

II MB-parabolic cones 

M 
-~nllxll ~ , Ilxll ~< ~-  

1 M 2 M 
[MIIxl l  2 B ' I l x l l />~ -  

1 
III B-paraboloids 2Btlxl l  2 As in Remark 5.3 

IV tangent - n o t  appropriate- Breiman & 
B-paraboloids Curler's 

v M ' - c o n e s  M'l lxl l  As in Remark 5.2 

VI From epigraph max { f ( x  + xm) - f(Xm)} Remarks before 
(xm,f(xm))EG 
Prop. 3.2 

rest an iteration is a function evaluation. Table II summarizes these results (note: 
iterations exceeding a predetermined limit are indicated with a > sign). 

More detailed convergence behavior can be seen in Figures 9-12 where the 
logarithm of the variation (i.e., the height of the bracket) is plotted against the 
iteration number. 

The tests empirically verify that the use of bigger cutting regions give better 
performance. Using the epigraph (VI) itself provides the most customization for 
the given f and gives the best performance. Of course it is not a practical 
algorithm at all, but is a useful benchmark. The curves when MB-parabolic cones 
(II) were used generally are uniformly better than when either M-cones (I) or 
B-paraboloids ( l i d  were used. For cones, using M' (V) is much better than using 
the Lipschitz constant. M (I). 

Table II. Iterations till one grid point in bracket 

Test I II Ill  IV V VI 

-EXP2 >30 8 10 27 10 6 
-COS2 > 100 56 57 68 58 6 
-RCOS >300 242 247 221 - 13 
-C6 >300 >300 >300 104 - 5 

Table III. Parameters used 

Test Domain Initial Point M M'  B B 

-EXP2 ( - 1 ,  1) x ( - 1 ,  1) (0.2, 0.2) 0.61 0.45 1 0.37 
-COS2 ( - 1 ,  1) x ( - 1 ,  1) (0.5, 0.5) 4.8 1.9 26.7 22.7 
-RCOS ( - 5 ,  10) • (0, 15) (0, 5) 113.6 - 29.2 16.8 
-C6 ( - 5 ,  5) x ( - 5 ,  5) (0, 0) 5601 - 5628 8.94 
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A few specific comments can be made. Figures 9 and 10 use functions with a 
small Lipschitz constant relative to the second derivative bounds. Performance of 
the two versions using paraboloids (III and IV) is similar (hence GEMB using 
B-paraboloids is better as no gradient is needed) until the final iterations, where 
using the B-paraboloid converges very quickly. This is mostly due to the fact that 
for these functions the upward B-paraboloid is a very good local approximation at 
the global minimum. In Figures 11 and 12, the Lipschitz constant is large, and the 
bound B is substantially smaller than B. Here the method of Breiman & Cutler 
(IV) outperforms the other method using paraboloids (III). This is especially 
apparent in Figure 12. 

7. Summary and Future Directions 

Put in the context of a geometrical extension of multidimensional bisection, the 
relationship of the geometry of the global minimum to the cutting regions has 
been shown to be a key factor guaranteeing brackets contain global minimum. 
Empirical tests verify that the closer the cutting region conforms to the epigraph 
at the global minimum, the better the convergence rates. 

The algorithms of Breiman & Cutler, Mladineo and Wood with appropriate 
choice of input parameters not originally envisioned were shown to be im- 
plementations in this context. These and other implementations still handle 
relatively simple cutting regions. Implementing GEMB using more interesting 
cutting regions is an interesting area for future work. 

A simple example was given in Section 4 that showed customized algorithms 
might be practical for the class of solutions to a differential equation. This was 
because facts about the geometry of the global minimum could be deduced 
without knowledge of its location or value. What are some other practical classes 
of functions? Under what circumstances can the geometry of the global minimum 
be practically deduced? 

Another area of future work concerns other sampling strategies. Sometimes 
sample points far away from the global minimum, but with large function values, 
cause a large area to be cut away. This saves the algorithm work later on. Is it 
worth trying to evaluate at points with large values in hope of cutting away large 
regions? Can this be done by trying to find the global minimum and maximum 
simultaneously? Next point strategies that choose evaluation points randomly may 
be more effective. 

Acknowledgements 

The author wishes to thank the International Institute for Applied Systems 
Analysis for invitation to the II Workshop on Global Optimization. Thanks to my 
colleague Graham Wood for sharing his work on multidimensional bisection. The 
enthusiasm and encouragement of the optimization team of Graham Wood and 
Zhang Baoping has been a major stimulus. 



212 w. BARITOMPA 

R e f e r e n c e s  

1. W. Baritompa (1990), Accelerating Methods for Global Optimization, Research Report, Uni- 
versity of Canterbury, Christchurch, New Zealand. 

2. W. Baritompa (1990), A Dual View of Multidimensional Bisection - Extensions and Implementa- 
tion, Research Report, University of Canterbury, Christchurch, New Zealand. 

3. Zhang Baoping, W. Baritompa, and G. R. Wood (1990), Multidimensional Bisection: The 
Performance and the Context, preprint. 

4. R. P. Brent (1973), Algorithms for Minimization without Derivatives, Prentice Hall, pp. 81-115. 
5. L. Breiman and A. Cutler (1989), A Deterministic Algorithm for Global Optimization, Math. 

Program. To appear. 
6. R. H. Mladineo (1986), An Algorithm for Finding the Global Maximum of a Multimodal, 

Multivariate Function, Mathematical Programming 34, 188-200. 
7. S. A. Piyavskii (1972), An Algorithm for Finding the Absolute Extremum of a Function, USSR 

Cornp. Math. and Math. Phys. 12, 57-67. 
8. Bruno O. Shubert (1972), A Sequential Method Seeking the Global Maximum of a Function, 

SlAM J. Numer. Anal. 9, 379-388. 
9. G. R. Wood (1992), The Bisection Method in Higher Dimensions, Math. Program. 55, 319-337. 

10. G. R. Wood (1991), Multidimensional Bisection and Global Optimization, Computers and Math. 
Applic. 21, 161-172. 


